Understanding the Local Structure-Property Relationships of Solders in Terrestrial vs. Microgravity Environments Using Electron Microscopy and Nano-mechanical Testing

Siddhartha (Sid) Pathak

Assistant Professor

Chemical and Materials Engineering

University of Nevada, Reno, NV 89557

https://wolfweb.unr.edu/homepage/spathak/

Solders in Terrestrial vs. Microgravity Environments

- In-Space Soldering Investigation (ISSI) experiments performed aboard the International Space Station (ISS) – 2003-2005
- The ISSI data has demonstrated that a *lack of* buoyancy forces in microgravity can internally trap the
 flux created during soldering at interfaces, such as
 repair joints.
- Hypothesis: such internal porosity can be detrimental to the desired strength of the joint, as well as its thermal and electrical conductivity
- Results will be instrumental in enhancing our fundamental understanding of the effects of surface tension driven convection phenomena during solidification processing operations such as brazing, soldering, and welding.
- Furthermore, the microgravity experiments represent a
 lowest gravity boundary condition. As such, these
 results could also be useful in predicting solidification
 behavior on other lower gravity environments (e.g.
 moon or Mars).

Photograph of solder drop created **in gravity** hanging from a silver-coated strand of copper wire

Photograph of solder drop created on the ISS in microgravity with an equilibrium "football" shape.

- [1] Struk Peter M. , Pettegrew Richard D. . Soldering in Reduced Gravity Experiment. SDTO 17003-U (SoRGE) 2017.
- [2] Grugel Richard N., Luz Paul, Smith Guy, Spivey Reggie, Jeter Linda, Gillies Donald, Hua Fay, Anilkumar A. V. Materials research conducted aboard the International Space Station: Facilities overview, operational procedures, and experimental outcomes. *Acta Astronautica* **2008**;62:491-8.
- [3] Grugel Richard, Gillies Donald, Murphy Lucinda, Ogle Julie A., Funkhouser Glen, Parris Frank, Anilkumar A.V., Hua Fay. Final Research Report. In-Space Soldering Investigation (ISSI). 2006.

Mechanical Testing Tools at the Micro-to-Nano length scales

■ The features of interest (porosity, dendrites etc.) in the solders have very small length scales (µm to mm)

characterization.

This requires specialized nano-

mechanical tools for testing and

Terrestrial Gravity Pore in micro-gravity
SEM

EBSD

Mechanical Testing Tools at the Micro-to-Nano length scales

■ The features of interest (porosity, dendrites etc.) in the solders have very small length scales (µm to mm)

800 µm

 This requires specialized nanomechanical tools for testing and characterization.

Terrestrial Gravity Pore in micro-gravity
SEM

EBSD

Investigating local mechanical response at the micro- and nano-scales: *In-situ* SEM straining capabilities at UNR

Investigating local mechanical response at the micro- and nano-scales: *In-situ* SEM straining capabilities at UNR

UNR: Nano-mechanical Testing Facilities

FEI SciosTM
Dualbeam FIB/SEM
NSF MRI grant
#1726897.

In-Situ indenters

Hysitron PI 85 SEM PicoIndenter

Alemnis Indenter system
DOE FY 2018 Scientific Infrastructure
Support for Consolidated Innovative
Nuclear Research

Ex-situ (in air) Indentation across interfaces

In-situ indentation - deformation of carbon nanotubes

Micro-pillar compression: Deformation of carbon nanotube pillars

Micro 3-point bending Crack propagation in nanolaminates

Al-TiN 50 nm - 150 nm

Al-TiN 5 nm - 5 nm

Correlating SEM frames to mechanical data shows stable crack growth under load

Micro-tensile testing: Cu/Nb multilayers

Compression testing of glass pillars at different strain rates

- Sample and tip heaters capable of 800°C (1000C currently under development)
- Ability to perform cryo temperature tests at -150°C (under development)

Microcompression strain rate jump tests on nanocrystalline and single crystalline Ni

Summary of capabilities

- Spherical Indentation Stress-Strain
- ➤ *In-situ* Indentation

- > In-situ SEM compression
- > In-situ SEM 3-point bending
- > In-situ SEM micro-tensile

In-situ high-strain rate testing at elevated temperatures

