Ceramic Material Processing Towards Future Space Habitat--Microstructure and Properties of fieldassisted sintering of lunar soil simulant (JSC-1)

Xin Li Phuah, Han Wang, Jin Li, Jaehun Cho, Xinghang Zhang and

Haiyan Wang

Materials Engineering Purdue University hwang00@purdue.edu

Acknowledgements: Samples provided by NASA Johnson Space Center (JSC-1).

Introduction of lunar habitat

- Goal: long duration human presence on the surface of the Moon
- Reduce mass of essentials from Earth by in situresources utilization
 - Extraction of oxygen for propellant and human sustenance
 - Extraction of metals and other pure materials (e.g. Si) for solar cells (power generation)
 - Construction of habitats and structures for habitation

Complexities of the conditions on the moon

- Lunar exosphere "hard vacuum"
 - 14 times less molecules/cm³ than Earth atmosphere
 - Gases: Ar, He, O₂, CH₄, N₂, CO, CO₂
- 17% gravity of Earth
- Temperature range from -173°C to 127°C depending on the sun

Lunar Resource Book.

Lunar regolith simulant JSC-1 to approximate lunar soil

- Lunar soil:NaAlSi₃O₄, CaAl₂Si₂O₈, (MgFe)₂SiO₄.....
- Simulant developed by NASA and Johnson Space Center

Oxide	Lunar soil	Simulant powder
	Concentration (wt.%)	
SiO ₂	47.3	47.71 ± 0.10
Al_2O_3	17.8	15.02 ± 0.04
CaO	11.4	10.42 ± 0.03
MgO	9.6	9.01 ± 0.09
FeO	10.5	7.35 ± 0.05
Fe ₂ O ₃	0.0	3.44 ± 0.03
Na ₂ O	0.7	2.70 ± 0.03
TiO ₂	1.6	1.59 ± 0.01

NASA Johnson Space Center JSC-1 datasheet

Previous reports on in situ resource utilization using lunar simulant soil

Contents lists available at ScienceDirect

Acta Astronautica

journal homepage: www.elsevier.com/locate/actaastro

Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks

Shannon L. Taylor ^{a,b}, Adam E. Jakus ^{a,b}, Katie D. Koube ^{a,b}, Amaka J. Nicholas R. Geisendorfer ^{a,b}, Ramille N. Shah ^{a,b,c}, David C. Dunand ^{a,*}

^c Department of Surgery (Transplant Division), Northwestern University, 251 E. Huron St. Galter 3-150, Chicago, IL 60611,

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/locate/jnoncrysol

Glass fibers and hollow glass microspheres produced by melting the simulant at 1450°C in air

JSC-1A lunar soil simulant: Characterization, glass formation, and selected glass properties

C.S. Ray a, S.T. Reis a,*, S. Sen b, J.S. O'Dell c

- a Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA
- b BAE System, Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, AL 35812, USA c Plasma Processes Inc., 4914 Moores Mill Road, Huntsville, Al 35811, USA

Allen et al., 1992, high T sintering Indyk, et al., 2017, high T sintering Altemire et al., 1993, cold press Taylor et al., 2005, microwave sitnering

Why field-assisted sintering?

- Also known as spark plasma sintering (SPS)
- Joule heating of graphite die by an applied field
- Significant reduction in sintering temperature and time compared to conventional sintering

Phuah, Wang, et al, in preparation.

Proposed steps to process lunar soil

Phuah, Wang, et al, in preparation.

Densification of powder compacts at low temperatures

Densification occurs between 550 to 600°C

Phuah, Wang, et al, in preparation.

Phase analysis and final properties of the bulk specimens after SPS

Property	Value	
Density	2.85 g/cm ³	
Hardness	6.01 ± 0.66 GPa	

Much higher compressive hardness and full density compared to prior reports.

Phuah, Wang, et al, in preparation.

Microstructure of the bulk specimens after SPS of lunar soil simulant

Phuah, Wang, et al, in preparation.

Summary

- Ceramic sintering experiment was conducted using lunar simulants.
- The bulk structures sintered by field-assisted sintering under moderate temperatures are of full density, without obvious porosity.
- Such dense sintered ceramic structures present great opportunities for constructing ceramic structures for future human space habitats.
- Much work is very much needed to further reduce the sintering temperature, optimize/simplify powder processing, evaluate structural integrity under lunar surface conditions, and conduct sintering experiments using actual lunar soils and lunar surface conditions.