CASIS-NSF-NIH Webinar

December 14, 2017

Devin Ridgley, PhD
Project Scientist
dridgley@hnuphotonics.com
Company Background and Operations

• Headquartered in Hawaii, HNu Photonics, LLC, www.hnuphotonics.com is a science and technology company that prides itself in transforming innovative ideas into state-of-the-art technologies.

• The focus of the company is defense and space-based photonics and specialized optics, opto-mechanical design, medical imaging and microfluidics technologies, introducing disruptive advances in each of these areas since 2006.
SCORPIO-V SpaceLabs: Overview

- SCORPIO-V provides pay-for-use instrumentation and operational support for microgravity research on our automated SpaceLabs platforms for life, material and physical sciences.

- SCORPIO-V’s SpaceLab suite enables researchers to perform long-duration automated cell biology experiments with live-cell imaging on-board the International Space Station, as well as short-duration flights on suborbital rockets.
BioChip SpaceLab Overview

The BioChip SpaceLab (BCSL) is capable of:

- Maintaining live-cell cultures for days to weeks to months
- Automated microfluidic delivery of multiple media formulations, reagents, fluorescently labelled probes and/or preservatives
- Automated bright-field and/or fluorescence imaging of cells for the duration of the experiment
- On-orbit 1G controls reference control experiments (via centrifuge)
- Optional ground based BCSL facility to perform calibrations and control experiments

The SCORPIO-V team provides experiment design, customization and end-to-end support for BCSL users.
BioChip SpaceLab: Live-Cell Experimentation

Observe live-cell experiments in real-time from minutes to hours to days to weeks:

- Time-course brightfield and fluorescence imaging
- Flexible configuration with adjustable parameters
- Automated multiple reagent delivery
- RNA/DNA preservatives and fixatives for post-flight analysis

- Characterize cell growth and proliferation
- Gene expression, cell function, migration, morphology
- Adherent, Suspension and Organoid cell cultures

Neuroblastoma Cell Differentiation
Cardiomyocyte Contractions
Human Lung Carcinoma Cells: 3D organoid
Cancer Cell Growth
BioChip SpaceLab: Fluorescence Microscopy

- Time-lapse fluorescence microscopy makes it possible to characterize cellular processes and sub-cellular functions in real-time.
 - 7 laser excitation wavelengths and multiple dichroic and emission filters offer a wide array of fluorescent imaging capabilities
 - Magnification options include 4x, 10x, 20x, 40x

Cell Cycle

Cell Migration

Cell Morphology
BioChip SpaceLab: Protocol Flexibility

Experimental design protocols tailored to investigator’s specific research

- **BioChip:**
 - 1, 2 and 4 well configurations for volumes ranging between ~500 µL & ~5 mL
 - Hollow Fiber: Provides a low shear environment for sensitive cell lines and suspension cell cultures

- **Centrifuge:**
 - Simultaneous 1G (or variable 0.1G-2G) control experiment while on-orbit

- **Ground Based BioChip SpaceLab:**
 - Calibrate protocols and/or conduct ground control experiments with BCSL equipment

- **Live or frozen-cell launch or experiment initiated on-orbit**
Summary of BioChip Configuration Offerings

<table>
<thead>
<tr>
<th>Hollow-fiber</th>
<th>Number of Wells</th>
<th>Appropriate for Adherent Cell Cultures*</th>
<th>Appropriate for Suspension Cell Cultures*</th>
<th>Appropriate for Organoid/Tissue Cell Cultures*</th>
<th>General Experiment Application*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-Omics</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-Omics, Imaging</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-Omics, Imaging</td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Imaging</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>-Omics, Imaging</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>-Omics, Imaging</td>
</tr>
</tbody>
</table>

* General BioChip usage suggestions to guide the researcher during experiment design. The final determination of BioChip configuration is up to the investigator regardless of cell culture or type of experiment.
Cell Culture Launching Scenarios

<table>
<thead>
<tr>
<th></th>
<th>Live Cell Launch</th>
<th>Frozen BioChip Cell Launch</th>
<th>Experiment Initiated on Orbit, Adherent Cell</th>
<th>Experiment Initiated on Orbit, Suspension Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Stowage Temperature</td>
<td>37°C</td>
<td>-80°C</td>
<td>-150°C</td>
<td>-150°C</td>
</tr>
<tr>
<td>Time to Start Experiment</td>
<td><5 days</td>
<td>1-3 months</td>
<td>> 1 year</td>
<td>> 1 year</td>
</tr>
<tr>
<td>Pre-Launch Cell Culture Preparation</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Adherent Cells</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Suspension Cells</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>ISS Biochip Seeding</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ISS Cell Incubation</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Centrifuge Prior to Exp.</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
</tbody>
</table>
Mobile SpaceLab

- A crossover platform
- Fly on SpaceX or Orbital ATK ISS resupply missions
- Perform long-term (25-35 days) live-cell microgravity investigations
- Automated microfluidics and microscopy, environmental control, and multiple reagent delivery
- No need for crew operations

-First flight scheduled for Q2 or Q3 2018
Mobile SpaceLab: Operations Overview

- Sample preparations prior to launch
- Appropriate levels of containment
- Launch powered to maintain experiments
 - 37°C for the cell culture and 4°C for reagents
- Unpowered option possible in 2nd gen system
- Transfer to ISS, connect to ISS telemetry and power
- Transfer back to SpaceX’s Dragon Capsule for sample return and analysis
- No crew operations aside from facility transfer to and from the launch vehicles
- SCORPIO-V operational support before, during and after the flight

SpaceX’s Dragon Vehicle
Orbital ATK’s Cygnus Vehicle
Microscopy SpaceLab

- Versatile state-of-the-art microscopy platform
- Material, physical, life sciences, and on-demand clinical investigations
- Programmable high resolution time-course imaging options

Specifications:
- Magnifications Ranging from 2X to 100X
- Upright & Inverted Illumination modes
- Phase Contrast, DIC and Polarization
- Fluorescence Imaging (multiple wavelengths)
- Confocal Microscopy
- Multiple modes of 3-D Imaging and Analysis
Triple-Bandpass Fluorescence Microscopy

Triple Band Pass Filter for FITC/Texas Red/DAPI

• Actin (red)
• Myosin (green)
• DNA (blue)

Muscle, 60x lens
3-D Fluorescence Microscopy of Brain Cells, 20X Lens
Tomography: Single Brain Cell, 100 microns thick, 60X Lens
SCORPIO-V Microgravity Research Support

Customized Solutions for each payload may include:
- Hardware modifications to meet scientific requirements
- Modified sample containers
- Full NASA integration documentation
- Experiment calibration support and preparation
- Other customizations possible pending requirements

Please visit www.scorpiov.com for additional information on each facility and/or contact any of the Principal Contacts on the next page to discuss your research project(s).
Thank You!

Principal Contacts

Dan O’Connell
Chief Executive Officer
doconnell@hnuphotonics.com

Caitlin O’Connell-Rodwell, Ph.D
Director of Life Sciences
ccoconnell@hnuphotonics.com

Devlin Ridgley, Ph.D
Project Scientist
dridgley@hnuphotonics.com

Robert Will
Project Manager
rwill@hnuphotonics.com