Below, explore peer-reviewed journal articles related to ISS National Lab investigations. For a more extensive list of spaceflight-related publications (not limited to ISS National Lab sponsorship), see the International Space Station Research Results Citations on the NASA website.
There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3?5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.
Although bone has remarkable regenerative capacity, about 10% of long bone fractures and 25% to 40% of vertebral fusion procedures fail to heal. In such instances, a scaffold is employed to bridge the lesion and accommodate osteoprogenitors. Although synthetic bone scaffolds mimic some of the characteristics of bone matrix, their effectiveness can vary because of biological incompatibility. Herein, we demonstrate that a composite prepared with osteogenically enhanced mesenchymal stem cells (OEhMSCs) and their extracellular matrix (ECM) has an unprecedented capacity for the repair of critical‐sized defects of murine femora.Furthermore, OEhMSCs do not cause lymphocyte activation, and ECM/OEhMSC composites retain their in vivo efficacy after cryopreservation. Finally, we show that attachment to the ECM by OEhMSCs stimulates the production of osteogenic and angiogenic factors. These data demonstrate that composites of OEhMSCs and their ECM could be utilized in the place of autologous bone graft for complex orthopedic reconstructions.
Two experiments were conducted aboard the International Space Station (ISS) in 2008 and 2009 that engaged elementary and middle school teachers and students worldwide in authentic science investigations designed to increase student knowledge of, and interest in, biology and space life science studies and biomedical careers. In the first project, a pilot called Butterflies and Spiders in Space, 1,876 middle school students tested a protocol for comparing, at near-real time, the behaviors of orb-weaver spiders and painted lady butterflies living in microgravity (aboard ISS) to those of comparable subjects in students' classrooms. Teachers reported that, as a result of project activities, 33% of their students designed additional experiments and 80% of students expressed interest in science careers. The second program, Butterflies in Space, enabled students to observe and investigate the life cycle and behaviors of painted lady butterflies living on ISS, and compare them to butterflies being studied in their own classes. Combining this near real-time experiment with hands-on explorations and webbased instructional strategies, Butterflies in Space reached more than 3,000 teachers, representing an estimated 180,000 students (grades 3-6) or more worldwide. It also received international coverage from a variety of media. Investigators at BioServe Space Technologies of the University of Colorado designed and built the chambers in which the spiders and butterflies were housed on ISS, and led technical and logistical operations for both programs. Baylor College of Medicine (BCM) educators and scientists developed the education framework and managed the web-based distribution of project data and teaching resources.
The nematode Caenorhabditis elegans, a popular organism for biological studies, is being developed as a model system for space biology. The chemically defined liquid medium, C. elegans Maintenance Medium (CeMM), allows axenic cultivation and automation of experiments that are critical for spaceflight research. To validate CeMM for use during spaceflight, we grew animals using CeMM and standard laboratory conditions onboard STS-107, space shuttle Columbia. Tragically, the Columbia was destroyed while reentering the Earth's atmosphere. During the massive recovery effort, hardware that contained our experiment was found. Live animals were observed in four of the five recovered canisters, which had survived on both types of media. These data demonstrate that CeMM is capable of supporting C. elegans during spaceflight. They also demonstrate that animals can survive a relatively unprotected reentry into the Earth's atmosphere, which has implications with regard to the packaging of living material during space flight, planetary protection, and the interplanetary transfer of life.
We explain the excess of the antiproton fraction recently reported by the AMS-02 experiment by considering collisions between cosmic-ray protons accelerated by a local supernova remnant and the surrounding dense cloud. The same “pp collisions” provide the right ratio of daughter particles to fit the observed positron excess simultaneously in the natural model parameters. The supernova happened in relatively lower metallicity than the major cosmic-ray sources. The cutoff energy of electrons marks the supernova age of ∼105 years, while the antiproton excess may extend to higher energy. Both antiproton and positron fluxes are completely consistent with our predictions in an earlier paper.
The heart and its cellular components are profoundly altered by missions to space and injury on Earth. Further research, however, is needed to characterize and address the molecular substrates of such changes. For this reason, neonatal and adult human cardiovascular progenitor cells (CPCs) were cultured aboard the International Space Station. Upon return to Earth, we measured changes in the expression of microRNAs and of genes related to mechanotransduction, cardiogenesis, cell cycling, DNA repair, and paracrine signaling. We additionally assessed endothelial-like tube formation, cell cycling, and migratory capacity of CPCs. Changes in microRNA expression were predicted to target extracellular matrix interactions and Hippo signaling in both neonatal and adult CPCs. Genes related to mechanotransduction (YAP1, RHOA) were downregulated, while the expression of cytoskeletal genes (VIM, NES, DES, LMNB2, LMNA), non-canonical Wnt ligands (WNT5A, WNT9A), and Wnt/calcium signaling molecules (PLCG1, PRKCA) was significantly elevated in neonatal CPCs. Increased mesendodermal gene expression along with decreased expression of mesodermal derivative markers (TNNT2, VWF, and RUNX2), reduced readiness to form endothelial-like tubes, and elevated expression of Bmp and Tbx genes, were observed in neonatal CPCs. Both neonatal and adult CPCs exhibited increased expression of DNA repair genes and paracrine factors, which was supported by enhanced migration. While spaceflight affects cytoskeletal organization and migration in neonatal and adult CPCs, only neonatal CPCs experienced increased expression of early developmental markers and an enhanced proliferative potential. Efforts to recapitulate the effects of spaceflight on Earth by regulating processes described herein may be a promising avenue for cardiac repair.
Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters evaluated in this study provide the basic ground work and pre-flight assessment needed to justify a model for microgravity studies with jatropha in vitro cell cultures. Future studies should focus on results of experiments performed with jatropha in vitro cultures in microgravity.
Charge Injection Devices (CIDs) have demonstrated direct contrast ratios in excess of 1:20 million from sub-optimal ground-based astronomical observations. CIDs are therefore interesting prospects for obtaining direct images from a host of high contrast ratio celestial scenes. However, while CIDs are capable of much deeper contrast ratios, potentially exceeding 1:1 billion, they do not address the Inner Working Angle (IWA) problem. If the Point-Spread Function (PSF) of a bright target is not well understood and accounted for, then the IWA will be large and nearby faint objects, like exoplanets, will be challenging to observe regardless of the detector used. As Earth's atmosphere is a major contributor to the variability of a PSF, high contrast ratio imaging with small IWAs will be best achieved in space. Therefore, if CIDs are to be used on future space-telescopes, they must be flight qualified in the space environment and shown to be at the appropriate Technology Readiness Level (TRL). Here we report the results of an 8 months CID technology demonstration mission that used the Nano-Racks External Platform mounted to the Kibo Exposed Facility on-board the International Space Station. Over the course of the 236 days mission we find no significant on-orbit changes of CID performance in terms of dark current, linearity, read noise, and photon transfer efficiency. As a result, CIDs are now space-qualified to TRL-8 and can be considered for future space telescopes.
Chemical-Garden Formation, Morphology, and Composition. II. Chemical Gardens in Microgravity ⇥
We studied the growth of metal-ion silicate chemical gardens under Earth gravity (1 g) and microgravity (μg) conditions. Identical sets of reaction chambers from an automated system (the Silicate Garden Habitat or SGHab) were used in both cases. The μg experiment was performed on board the International Space Station (ISS) within a temperature-controlled setup that provided still and video images of the experiment downlinked to the ground. Calcium chloride, manganese chloride, cobalt chloride, and nickel sulfate were used as seed salts in sodium silicate solutions of several concentrations. The formation and growth of osmotic envelopes and microtubes was much slower under μg conditions. In 1 g, buoyancy forces caused tubes to grow upward, whereas a random orientation for tube growth was found under μg conditions.
The Communications Interface Board (CIB) is an improved communications architecture that was demonstrated on the International Space Station (ISS). ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT) bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO) and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed.
A central mechanism for controlling circadian gene amplitude remains elusive. We present evidence for a “facilitated repression (FR)” model that functions as an amplitude rheostat for circadian gene oscillation. We demonstrate that ROR and/or BMAL1 promote global chromatin decondensation during the activation phase of the circadian cycle to actively facilitate REV-ERB loading for repression of circadian gene expression. Mechanistically, we found that SRC-2 dictates global circadian chromatin remodeling through spatial and temporal recruitment of PBAF members of the SWI/SNF complex to facilitate loading of REV-ERB in the hepatic genome. Mathematical modeling highlights how the FR model sustains proper circadian rhythm despite fluctuations of REV-ERB levels. Our study not only reveals a mechanism for active communication between the positive and negative limbs of the circadian transcriptional loop but also establishes the concept that clock transcription factor binding dynamics is perhaps a central tenet for fine-tuning circadian rhythm.
Spaceflight results in bone loss like that associated with osteoporosis or decreased weight-bearing (for example, high-energy trauma such as explosive injuries and automobile accidents). Thus, the unique spaceflight laboratory on the International Space Station presents the opportunity to test bone healing agents during weightlessness. We are collaborating with NASA and the US Army to study bone healing in spaceflight. Given the unique constraints of spaceflight, study design optimization was required. Male mice were selected primarily because their femur is larger than females', allowing for more reproducible surgical outcomes. However, concern was raised regarding male mouse aggression. In addition, the original spaceflight study design included cohousing nonoperated control mice with mice that had undergone surgery to create a segmental bone defect. This strategy prompted the concern that nonoperated mice would exhibit aggressive behavior toward vulnerable operated mice. We hypothesized that operated and nonoperated male mice could be cohoused successfully when they were cagemates since birth and underwent identical anesthetic, analgesic, preoperative, and postoperative conditions. Using quantitative behavioral scoring, body weight, and organ weight analyses (Student t test and ANOVA), we found that nonoperated and operated C57BL/6 male mice could successfully be housed together. The male mice did not exhibit aggressive behavior toward cagemates, whether operated or nonoperated, and the mice did not show evidence of stress, as indicated by veterinary assessment, or change in body or proportional organ weights. These findings allowed our mission to proceed (launched February 2017) and may inform future surgical study designs, potentially increasing housing flexibility.
There is widespread investment of resources in the fields of Computer Science, Science, Technology, Engineering, Mathematics (CS-STEM) education to improve STEM interests and skills. This paper addresses the goal of revolutionizing student education using collaborative gaming and competition, both in virtual simulation environments and on real hardware in space. The concept is demonstrated using the SPHERES Zero Robotics (ZR) Program which is a robotics programming competition. The robots are miniature satellites called SPHERES—an experimental test bed developed by the MIT SSL on the International Space Station (ISS) to test navigation, formation flight and control algorithms in microgravity. The participants compete to win a technically challenging game by programming their strategies into the SPHERES satellites, completely from a web browser. The programs are demonstrated in simulation, on ground hardware and then in a final competition when an astronaut runs the student software aboard the ISS. ZR had a pilot event in 2009 with 10 High School (HS) students, a nationwide pilot tournament in 2010 with over 200 HS students from 19 US states, a summer tournament in 2010 with ∼150 middle school students and an open-registration tournament in 2011 with over 1000 HS students from USA and Europe. The influence of collaboration was investigated by (1) building new web infrastructure and an Integrated Development Environment where intensive inter-participant collaboration is possible, (2) designing and programming a game to solve a relevant formation flight problem, collaborative in nature—and (3) structuring a tournament such that inter-team collaboration is mandated. This paper introduces the ZR web tools, assesses the educational value delivered by the program using space and games and evaluates the utility of collaborative gaming within this framework. There were three types of collaborations as variables—within matches (to achieve game objectives), inter-team alliances and unstructured communication on online forums. Simulation competition scores, website usage statistics and post-competition surveys are used to evaluate educational impact and the effect of collaboration.
The problem of collective search is a tradeoff between searching thoroughly and covering as much area as possible. This tradeoff depends on the density of searchers. Solutions to the problem of collective search are currently of much interest in robotics and in the study of distributed algorithms, for example to design ways that without central control robots can use local information to perform search and rescue operations. Ant colonies operate without central control. Because they can perceive only local, mostly chemical and tactile cues, they must search collectively to find resources and to monitor the colony's environment. Examining how ants in diverse environments solve the problem of collective search can elucidate how evolution has led to diverse forms of collective behavior. An experiment on the International Space Station in January 2014 examined how ants (Tetramorium caespitum) perform collective search in microgravity. In the ISS experiment, the ants explored a small arena in which a barrier was lowered to increase the area and thus lower ant density. In microgravity, relative to ground controls, ants explored the area less thoroughly and took more convoluted paths. It appears that the difficulty of holding on to the surface interfered with the ants' ability to search collectively. Ants frequently lost contact with the surface, but showed a remarkable ability to regain contact with the surface.
Huntington's disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity.
The Geostationary Ocean Color Imager (GOCI) is the first geostationary ocean color sensor in orbit that provides bio-optical properties from coastal and open waters around the Korean Peninsula at unprecedented temporal resolution. In this study, we compare the normalized water-leaving radiance (nLw) products generated by the Naval Research Laboratory Automated Processing System (APS) with those produced by the stand-alone software package, the GOCI Data Processing System (GDPS), developed by the Korean Ocean Research & Development Institute (KORDI). Both results are then compared to the nLw measured by the above water radiometer at the Ieodo site. This above-water radiometer is part of the Aerosol Robotic NETwork (AeroNET). The results indicate that the APS and GDPS processed correlates well within the same image slot where the coefficient of determination (r^2) is higher than 0.84 for all the bands from 412 nm to 745 nm. The agreement between APS and the AeroNET data is higher when compared to the GDPS results. The Root-Mean-Squared-Error (RMSE) between AeroNET and APS data ranges from 0.24 [mW/(cm^2srμm)] at 555 nm to 0.52 [mW/(cm^2srμm)] at 412 nm while RMSE between AeroNET and GDPS data ranges from 0.47 [mW/(cm^2srμm)] at 443 nm to 0.69 [mW/(cm6^2srμm)] at 490 nm.
The root apex is an important region involved in environmental sensing, but comprises a very small part of the root. Obtaining root apex transcriptomes is therefore challenging when the samples are limited. The feasibility of using tiny root sections for transcriptome analysis was examined, comparing RNA sequencing (RNA-Seq) to microarrays in characterizing genes that are relevant to spaceflight.
A biological life support system for spaceflight would capture carbon dioxide waste produced by living and working in space to generate useful organic compounds. Photosynthesis is the primary mechanism to fix carbon into organic molecules. Microalgae are highly efficient at converting light, water, and carbon dioxide into biomass, particularly under limiting, artificial light conditions that are a necessity in space photosynthetic production. Although there is great promise in developing algae for chemical or food production in space, most spaceflight algae growth studies have been conducted on solid agar-media to avoid handling liquids in microgravity. Here we report that breathable plastic tissue culture bags can support robust growth of Chlamydomonas reinhardtii in the Veggie plant growth chamber, which is used on the International Space Station (ISS) to grow terrestrial plants. Live cultures can be stored for at least 1 month in the bags at room temperature. The gene set required for growth in these photobioreactors was tested using a competitive growth assay with mutations induced by short-wave ultraviolet light (UVC) mutagenesis in either wild-type (CC-5082) or cw15 mutant (CC-1883) strains at the start of the assay. Genome sequencing identified UVC-induced mutations, which were enriched for transversions and non-synonymous mutations relative to natural variants among laboratory strains. Genes with mutations indicating positive selection were enriched for information processing genes related to DNA repair, RNA processing, translation, cytoskeletal motors, kinases, and ABC transporters. These data suggest that modification of DNA repair, signal transduction, and metabolite transport may be needed to improve growth rates in this spaceflight production system.
We analyze the consolidation of freshly deposited cohesive and noncohesive sediment by means of particle-resolved direct Navier-Stokes simulations based on the immersed boundary method. The computational model is parametrized by material properties and does not involve any arbitrary calibrations. We obtain the stress balance of the fluid-particle mixture from first principles and link it to the classical effective stress concept. The detailed data sets obtained from our simulations allow us to evaluate all terms of the derived stress balance. We compare the settling of cohesive sediment to its noncohesive counterpart, which corresponds to the settling of the individual primary particles. The simulation results yield a complete parametrization of the Gibson equation, which has been the method of choice to analyze self-weight consolidation.
Previously published simplified n-alkane cool-flame chemistry is re-evaluated for n-dodecane. Comparison with experimental results produces improved rate-parameter estimates for n-dodecane and indicates deterioration of the simplified chemistry with increasing pressure in predictions of droplet diameters at cool-flame extinction